百科网(百科之音)

地震

时间:2020-04-13 18:39:41

地震是地球表层或表层下的振动所造成的地面震动,可由自然现象如地壳运动、火山活动及陨石撞击引起,亦可由人为活动如地下核试验造成,不过历史上主要的灾害性地震都由地壳的突然运动所造成。地震的影响力涵盖岩石圈及水圈──当地震发生时,可能会连带引发地表断裂、大地震动、土壤液化、山崩、余震、海啸、甚至是火山活动,并影响人类的生存及活动。

Global_plate_motion.jpg

地震产生的原因是因为地壳在板块运动的过程中累积应力,当地壳无法继续累积应力时,地壳会破裂,释放出地震波,使地面发生震动,地震可由地震仪透过对地震波的观察来量测,地震震级表示地震所释放出来的能量大小,地震烈度指地震在该地点造成的震动程度,地震的发生处称为震源,其投影至地表的位置为震中。

并非世界上所有的地区都会发生地震。地震与火山分布一样,主要集中在板块相互作用的地区。目前世界上主要分为三个频繁发生地震的“地震带”:环太平洋地震带(占80%)、从地中海一路向东延伸至喜马拉雅山区和印尼的欧亚地震带、位于各大洋洋中脊的洋中脊地震带。并不是所有地震都发生在以上三个地震带,另外有一小部分大地震发生在板块内部,主要集中在大的活动断层带及其附近地区,例如1976年的中国河北唐山大地震

地震的成因

构造地震

由于地壳运动引起地壳岩层断裂错动而发生的地壳震动,称为地震。由于地球不停地运动变化,从而从地壳内部产生巨大地应力作用。在地应力长期缓慢的作用下,造成地壳的岩层发生弯曲变形,当地应力超过岩石本身能承受的强度时便会使岩层断裂错动,其巨大的能量突然释放,形成构造地震,世界上绝大多数地震都属于构造地震。全世界百分之九十的地震都属于此类型。因为岩层受到二地壳之间互相推挤的力量,岩层因受力而产生形变,直到地应力大于岩层本身所能承受的力时,岩层发生断裂放出地震波,造成地震。 著名的“弹性反弹理论(Elastic Rebound Theory)”即是说明此现象。

火山地震

由于火山活动时岩浆喷发冲击或热力作用而引起的地震,称为火山地震。火山地震数量较小,数量约占地震总数的7%左右。地震和火山通常存在关联。火山爆发可能会激发地震,而发生在火山附近的地震也可能引起火山爆发。一般而言,影响范围不大。在地底的压力过大所造成的火山爆发,岩浆上涌所造成的地面震动。

陷落地震

由于地下水溶解可溶性岩石(如石灰岩),或由于地下采矿形成的巨大空洞,造成地层崩塌陷落而引发的地震,称为陷落地震。这类地震约占地震总数的3%左右,震级也都比较小。

诱发地震

在特定的地区因某种地壳外界因素诱发而引起的地震,称为诱发地震。这些外界因素可以是地下核爆炸、陨石坠落、油井灌水等,其中最常见的是水库诱发地震。水库蓄水后改变了地面的应力状态,且库水渗透到已有的断层中,起到润滑和腐蚀作用,促使断层产生滑动。但是,并不是所有的水库蓄水后都会发生水库地震,只有当库区存在活动断裂、岩性刚硬等条件,才有诱发的可能性。

气候暖化跟地震的关联

全球气候暖化使高纬度地区的冰川加速溶解,并相应的使全球海平面上升。对于高纬度地区而言,冰川的溶解使地壳上覆之重量减小,并导致地壳回弹。在地壳回弹的过程中,地壳内应力的分布也相应的发生改变,导致原有的断层系统重新活化,并产生地震。此类地震多发生于板块内部地区,并且大多数皆发生于高纬度地区。1989年发生于魁北克的Mw6.3级地震即为其中一例。

人工地震

以人为采用强力炸药直接破坏地壳,藉以测得相关研究数据,或进行矿藏开采,武器测试等活动。例如2017年发生在朝鲜社会人民主义共和国的Mw6.3地震,便是进行核子试验所造成的。

地震波

根据弹性回跳理论,造成地震的原因是岩石中断层的破裂。当断层破裂时,两侧的岩体会相对移动并释放出累积的能量。虽然其中大部分的能量都在克服摩擦力中损失为热能,但是剩下的部分则转换为动能,并以弹性波的形式散发出去,这些波称为地震波。地震波是地震的直接表现,因此,研究地震波的到来时间、大小、振动方式等,就可以了解一个地震的发生时间、大小、发生机制等,进而研究地震。

在地球物理学上,由于地震波具备物理上实体波的特性,因此,地震波在穿越不同介质时,便有机会发生折射、反射及全反射。当许多波叠加在一起时,还有机会发生共振,并产生驻波。换句话说,研究地震波,除了了解地震本身外,还可以一窥地球内部堂奥。因为地球很大,挖深井等直接方法研究内部构造效果有限,因此分析地震波是目前人类最常用的地球物理方法。

地震波主要分为三种:实体波、面波和尾波。

地震仪纪录下的地震波,红线是先到来的P波,绿线是较晚的S波。

地震波是地震震源瞬间散发能量初方式,当地球物质在实体波经过时,可能以三维方式(上下、左右、前后)震动。如果不同质点间的震动方向属于(相对于波速方向的)前后震动,代表震波以前后压缩、纵波的方式向外传递,这种一密一疏的震波称为“P波”。P代表主要(Primary)或压缩(Pressure)。由于P波的传播来自于在传播方向上施加压力,而地球内部几乎不可压缩,因此P波很容易通过介质传递能量。事实上,P波是所有地震波里最快的波,因此也会是地震仪第一个记录到的波。因为压缩力在固体、液体中都能存在,因此P波能在固体和液体中传播。

还有一种实体波到来的较晚,称为“S波”。S波中的S代表次要(Secondary)或剪力(Shear)。在S波的行进过程中,不同于P波,质点会在上下或左右方向震动、以横波的方式前进。因为液体无法忍受剪切,所以S波不能通过液体(例如外地核),P波则可。S波的波速约为P波的0.58倍,振幅约为P波的1.4倍。由于当地震波从地底来到地表时,S波的震动方向平行于地表的分量较多,较容易水平拉扯建筑物,而一般建筑垂直耐震能力较强,水平耐震能力较弱,故S波经常是造成地震破坏的主因。

由于接近地表的地层地震波速率较低。因此,再进地表处发生的地震,很容易把能量送进地表的低速层内,这些蓄积的能量波称为“陷波”。当累积的陷波彼此干涉,倘若发生建设性干涉,便有机会使地层共振,使能量沿地表传播。面波传递速度较S波慢一些。P波及S波干涉的面波为瑞利波(Rayleigh Wave),又称为地滚波,粒子运动方式类似海浪,在垂直面上,粒子呈逆时针椭圆形振动,震动振幅一样会随深度增加而减少。由S波相互干涉的面波为勒夫波(Love Wave),振动只发生在水平方向上,没有垂直分量,差别是侧向震动振幅会随深度增加而减少。

在近距离地震纪录(小于200千米)中,在S波后方的波包并非面波,而是尾波。地球内部虽然大致是均匀的,但小部分有不均匀的质点分布,越靠近地表越多(例如断层或岩石裂痕)。当震波向外传播时,这些不均匀或散射质点或与震波作用,产生散射现象。此散射波在纪录中会形成尾波。尾波的长短与震波耗散为热能的程度有关。例如月球因为刚性较低,耗散低,故尾波时间长。尾波如同地震图上异质性所留下的“指纹”,研究尾波,可以促进对一地地质结构之了解。

地震度量

目前衡量地震震级的标准主要有震级(Magnitude)和烈度(Seismic intensity)两种。

震级

参见:里氏地震震级、矩震级、体波震级、面波震级和日本气象厅地震规模

地震大小的一种度量,根据地震释放能量多少来划分。目前国际上一般采用美国地震学家查尔斯·弗朗西斯·里克特和宾诺·古登堡于1935年共同提出的震级划分法,即现在通常所说的里氏地震震级。里氏震级是地震波最大振幅以10为底的对数,并选择距震中100千米的距离为标准。里氏震级每增大一级,释放的能量约增加31.6倍,相隔二级的震级其能量相差1000倍。由于里氏地震震级在超过ML7以上会发生饱和现象,并且不适合用来测量远距地震的规模,因此科学界现多使用矩震级描述中型到大型地震的地震震级。

小于里氏震级2.5的地震,人们一般不易感觉到,称为小震或微震;里氏震级2.5-5.0的地震,震中附近的人会有不同程度的感觉,称为有感地震,全世界每年大约发生十几万次;大于里氏震级5.0的地震,会造成建筑物不同程度的损坏,称为破坏性地震。里氏震级4.5以上的地震通常可以在全球范围内监测到。有记录以来,历史上最大的地震是发生在1960年5月22日19时11分南美洲的智利,经过重新分析该地震的波形,科学家认为该地震的矩震级达Mw 9.5。

烈度

参见:烈度

指地震对地面所造成的破坏和影响程度,由地震时地面建筑物受破坏的程度、地形地貌改变、人的感觉等宏观现象来判定。地震烈度源自和应用于十度的罗西福雷尔分级(Rossi-Forel scale),由意大利火山学家朱塞佩·麦加利(Giuseppe Mercalli)在1883年及1902年修订。后来多次被多位地理学家、地震学家和物理学家修订,成为今天的修订麦加利地震烈度(Modified Mercalli Scale)。“麦加利地震烈度”从感觉不到至全部损毁分为1(无感)至12度(全面破坏),6度或以上才会造成破坏。

每次地震的震级数值只有一个,但烈度则视乎该地点与震中的距离,震源的深度,震源与该地点之间和该地点本身的土壤结构,以及造成地震的断层运动种类等因素而有强弱的变化。然而,一般说来烈度会随距离震中的距离而成指数比的下降。